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Diving Autopilot Design for Underwater Vehicles Using 
Multi-Objective Control Synthesis 

S a m - S a n g  You* and Y o u n g - H o  Chai** 
(Received February 23, 1998) 

This paper presents the mathematical modeling, guidance and robust control synthesis of a 

highly maneuverable submersible vehicle (or underwater vehicle) when performing a specific 

mission at shallow submergence conditions. First, the vertical plane motions (heave and pitch) 

of the vehicle are modeled by a set of maneuvering equations. After model simplification, a state 

-space model is compactly obtained. Then a state-feedback controller is proposed for the 

accurate depth-keeping and pitch motion controls of the vehicle. The control actions to the 

generalized plant can be provided by the mixed H2/H= optimal synthesis as well as c losed- loop 

pole constraint with LMls. The feasibility of the guidance and control approach is verified with 

direct numerical simulations. The proposed approach ensures reasonable depth-keeping and 

minimal pitch motions, even under a given uncertainty condition. 

Ke~ Words : Underwater Vehicle, Diving (Vertical) Plane, State-Space Model, Disturbance, 

Autopilot,  Mixed Hz/H= Synthesis, Pole Constraint, Linear Matrix Inequalities 

(LMIs).  

Nomenclature 
I~,0,~• : n •  n identity matrix, nxm null 

matrix 

N+ "set of positive real numbers in 

[ 0 ,  co] with real field ,~ 

A,  B : system matrix, (control or distur- 

bance) input matrix 

C, D : output matrix, (control or distur- 

bance) input matrix 

J f  ;p i tch  moment of inertia about 

p - b o d y  axis 

U : surge rate (forward speed) along 

with the axis 

co : heave rate (vertical speed) along 

with the axis 

0, q : pitch angle, pitch angular veloc- 

ity 

y : measured output vector 
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(97B, Z~) : coordinates of the center of buoy- 

ancy in the body frame 

(:?c, zG) ;coordina tes  of the c. g. in the 

body frame 

m~, lIVe, Ww : vehicle mass, buoyancy, weight 

p : fluid density 

z~, zz : vectors of performance outputs of 

interest 

A > O ( A < O )  : positive-definite (negative-defi- 

nite) matrix 

[~---~DI "state-space realization of the 

transfer matrix C ( s ( I - A ) - a B  

+ D  
: angular frequency 

II w[12-- (f=wrwdt)l'2<~ " the L2(ene rgy)  

norm of  the vector of signals w 

(t) 
IIA (s)ll~= sup a [ A  (j~)] ". H= norm of the 

0 < a J < ~  

stable transfer function matrix A 

(s) 

IIA (.s.)ll~={(~/2 7c) f~ T r a c e [ A * ( j g )  A ( j g )  
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daS]} ~/2 : //2 norm of the matrix 

A ( s )  
6 ( A )  : largest  (or maximum) singular 

value of A 

e-) : normalized version of variable(o) 

I. Introduction 

Research on submersible vehicle is a field of 

increasing interest due to its many applications. 

Especially the high-performance vehicles are 

expected to provide increased maneuverability 

and agility at various speeds as well as depths. 

The design of accurate maneuvering controller, 

commonly called autopilot for underwater vehi- 

cle, is challenging because the system dynamics 

are highly nonlinear in nature and contains vari- 

ous uncertainties. In fact, a vehicle performing a 

specific mission near the sea surface is subject to 

external perturbations caused by sea conditions 

such as underwater currents and waves. There- 

fore, the vehicle autopilot must be capable of 

exhibiting considerable robustness to all distur- 

bance effects and keeping the vehicle in the desir- 

ed depth. 
Various design methodologies have been devel- 

oped over the past decades for dynamics, control 

synthesis, and stability analysis of submersible 

vehicle (Geuler, 1989: Healey and Lienard, 1993; 

Papoulias, 1993) in which the PID-type and 

optimal controllers are widely used in calm sea 

conditions. In order to improve the autopilot 's  

performance, muhivariable methods have been 

applied to the depth-keeping control of  modern 

submarines (Marshfield 1991). Earlier works in 

multivariable control synthesis have mainly util- 

ized a quadratic cost function to minimize the 2 

-norm of a system response to white noise inputs. 

As Shown in references (Bernstein et al., 1991; 

Doyle et al., 1989), the linear quadratic Guassian 

(LQG) type of cost function is often a practical 

criterion for minimizing tracking errors or con- 

trol signal variations. Eventhough, the H2 

approach is well suited to many real systems, it is 

well known that its stability and performance 

cannot be guaranteed in the presence of various 

uncertainties. As is in case of any submersible 

vehicles, the system is expected 1o operate in a 

highly variable environment and will be effected 

by some fluctuations at shallow depth. One of the 

most important advances in the past decades on 

the multivariable control is the development of 

H= control theory (Glover and Doyle, 1988). It 

has been recognized that the H= synthesis guaran- 

tees the robust stability and disturbance rejection 

performance in the presence of uncertainty, but 

that the H~ -optimal  controller typically leads to 

an intolerably large control eltbrt. The mixed //2 

and H~. performance criteria become indispens- 

able to quantitatively demonstrate design trade- 

offs. Several researchers have devoted consider- 

able attention over the past several years to the 

mixed H2/H= control method for uncertain 

dynamical systems (Bernstein et at., 1991; Rotea 

and Khargonekar, 1992). On the other hand, it 

must be noted that many control problems can be 

cast into multi-objective characteristics and read- 

ily solved by LMI approach (Boyd et al., 1994). 

In addition, several authors (Iwasaki and 

Skelton, 1994; Chilali and Gahinet, t996) have 

shown that an LMI synthesis is useful tool for 

multiobjective control problems. 

To the author's knowledge, there has been no 

paper considering the comprehensive dynamics 

issues as well as the kMl-based  H2/H= control 

approach for submersible vehicles. This study is 

to design the vehicle autopilot for vertical plane 

motions via LMIs: //2 optimal with Ha distur- 

bance attenuation and closed- loop pole place- 

ment. As a result, the submersible vehicle main- 

tains a nearly constant depth relative to the sea 

surface and has minimal angular pitch motions as 

well in the presence of the uncertainties. 

The paper is organized as follows. Sec 2 

describes the linear vertical dynamics of the vehi- 

cle. In Sec 3, we present a class of robust linear 

controllers for the pitch/depth maneuver. In Sec 

4, the autopilot performance has been extensively 

assessed through a series of numerical simula- 

tions. Finally, the contributions and conclusions 

of  the work are summarized in Section 5. 



1118 Sam-Sang You and Young-Ho Chai 

2. U n d e r w a t e r  Vehic le  Model l ing  

2.1 Vehicle kinematics and dynamics 
The standard submersible vehicle being consid- 

ered in the study is a realistic one but does not 

represent any particular model in use. For most 

submersible vehicles the motion analysis is con- 

ventionally separated into motions in the vertical 

plane and horizontal plane. 

Figure l depicts two orthonormal coordinate 

systems for the diving plane; ( O - X ,  Y, Z ) i s  

the inertial reference frame fixed on sea surface 

with Z pointing "down"; ( 6 - Z ,  y ,  zT) is the 

body-fixed frame with its origin located at the 

vehicle's center of gravity (or c. g.). As is usual, 

the diving (or depth/pitch) plane guidance and 

control surfaces include a set of hydroplanes: bow 

hydroplane angle (Sb), stern hydroplane (&).  

In the vehicle linearization procedure, typical 

coefficients in the Taylor series expansion take 

the forms of partial derivatives of forces or 

moments terms. For example, the stability deriva- 

tive coefficients Zq and Mq respectively represent 

the shorthand notations of  

_ 8 Z  8 M  

which mean that the partial motion derivatives of 

the heaving force Z and the pitch moment M with 

respect to pitch rate q taken at the steady-state 

reference point (q0). Considering only the diving 

plane motions with constant forward speed (U) ,  

the coupled differential equations for vehicle 

motions are written in the body frame as follows 

(Geuler, 1989; Healey and Lienard, 1993; Marsh- 

field, 1991; Papoulias, 1993): 

(Heave Motion): m,(cb- Uq- gc~)  = 

 l Ezo u o+ u (z oa  + ] + 2 l (z uq 

+Z~o)) +~[4Z4q + (Ww- WB) COS O+gF (1) 

(Pitch Motion): Is -mvE zG(cb- Uq) ] = 

g ouo + U2(M b b + ] 

(MqUq+ Ms +~lSMq(t - ( x c W w -  2sWB) 

cos 0 - -  (2cWw- s  O+gM (2) 

The expressions on the r ight-hand sides in (1-2) 

represent the hydrodynamic and external heave 

forces and the corresponding pitch moments act- 

ing on the vehicle; they refer to hull, weight and 

buoyancy, hydroplanes, drag, and other external 

efforts. In the above formulation, we ignore the 

higher-order  derivatives terms in the Taylor 

expansion. The numerical values of any particular 

Taylor  coefficients in (1-2) depend on a specific 

vehicle model. In general, the coefficients, which 

are dimensionless derivative constants, are calcu- 

lated by means of experimental tests for a proto- 

type model (Clayton and Bishop, 1982). When an 

underwater vehicle is operating in a shallow 

submerged condition, the major external forces 

(moments) include the sea surface disturbance, 

the current, wave, and other external efforts. In 

order to avoid complex mathematics, it is 

assumed that the forces and moments due to the 

various sea conditions change slowly. They can 

be represented by first-order polynomial forms gv 

=b~w~ and gg=bzw2(You, 1996) with b ~  +. 
Now the kinematic relations are governed by the 

following equations, which determine the c. g. 

path relative to the inertial reference frame: 

0 = q  (3) 
/ ~=wcos  0 - U s i n  0 + w c o s  O-~w-UO (4) 

Fig. 1 Submarine system configuration 
(lateral view). 

where the pitch angle 0 is small ( 0 ~ 0 ) ,  namely 

sin (0) -~ 0 and cos (0) ~ I. Without loss of gener- 
ality, the following assumptions are made to 

develop the state-space equations of motion: 

[-AI]: The rudders are locked for the pitch 
plane 

I-A2]: The vehicle is a rigid with having a port /  
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starport symmetric structure. 

[A31]: The metacentric height 2c8 ( =  Z c -  2~ > 

0) is equal to ~c with zSB-----0 

[A4]: The vehicle is neutrally buoyant, or Ww 

= W ~  
[A511: The b o d y z - f r a m e  ofc.  g. is equal to that 

of buoyancy, or Y c =  YB 

2.2 State-space model of the vehicle motion 
For the compact dynamic and kinematic 

model, we define the state-vector as x=[~w,  
8q, ~h, ~30] r, the control input variables as u 

= [ 3 ~ ,  3~] T, and the uncer ta inty  (or  distur-  

bance) vector as w =  [wl, wz] r. Based on the 

above assumptions, the linearized form of the 

vehicle model (1-4) about the operating points 

x0 can be expressed as: 

EMJb = EA3C + E~, oo + Es~ u (5) 

A set of matrices in (5) can be written as: 

EM= --(mJ~a+/~zM'~ ];-/z4Mq 0 0 
0 0 1( ' 
0 0 0 

[ ~IZogU ( mo ~- [J2Zq) U 0 
EA = .u3M,oU - ( m ~ c - / 1 3 M q )  U 0 

l 0 0 

0 1 0 

~ 1 
- (ZgWw- 2BWs) 

-U 
0 

i , 
where ,~1= (0/2) [ 2 ; /~2= (0/2)  l 3 ; g3 = (p/2) 

14 ; /~4= (O/2) [ s. Note that the state variables 3(o, 
0q, 3h and c~0 in (5) are variations from the 

steady--state operating points (x0=0) ;  ~w~wo 
--CO, ~'q~qo--q, 3h=ho-h,  and 30=--00-0. 
Referring to the model given in descriptor form 

(5), we obtain the state-space realization as 

ak=Ax+ B~w+ Bzu (6) 

where a set of matrices are denoted by A =  

E~taEa, BI=E~IE~I, and B2=EiiIEB~ with det 
(EM) :#0. For an accurate pi tch/depth maneuver, 

the vehicle autopilot controller must compensate 

the uncertainty effects (w) and keep the vehicle 

in the desired depth with a minimal pitch angular 

motion. 

3. V e h i c l e  C o n t r o l  S y n t h e s i s  w i t h  

L M I s  

3.1 Control formulation with state-feedback 
The design of  robust autopilot for submersible 

vehicles generally involves many constraints and 

competing objectives. In the paper, an autopilot is 

required to minimize depth and pitch angular 

fluctuations with appropriate control energy. 

Consider the general mixed-norm synthesis for 

multiple objective problems shown in Fig. 2. 

First, the generalized plant p ( o r  ~ e )  to be 

controlled by the gain matrix K ( ~ k )  is given by 

the state-space realization with assuming full 

measurements of its state vector: 

l x = A x + B ~ w + B 2 u  
z~= Clx + Dl lw+ D12u 

'~'P Z2 =C2x@D21w@Dzzu  (7) 
y = X  

with a control law u = g x  

where A,  B1, B2, C1, C2, D11, D12, D21 
and D22 are real matrices of compatible dimen- 

sions; k denotes the set of all real proper control- 

lers. Then the augmented plant is compactly re- 

written as 

[ A B ; u B 2  

p =  CI D12 (8) 

Fig. 2 

w --5 I 

I y--x 
The multi-objective framework with state 
-feedback regulator. 
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Moreover, the state-space realizations of  the 
closed-loop systems are described by 

Ect " | = [ Co,| Da~ ~ (9) 

L Z2] [Cct2 Dct2 

where the closed-loop matrices with xct have 
appropriate sizes and are further given as 

c..  D..I=IC,+D,=K DH (10) 
Cczz Dc,z J l C2 + D22K D2,J 

Let ~..c,| Bct, Ccl~., Dct=} and ~-].cn= 
{Act, Bct, Ccn, Dct2} denote the state-space 
realizations of T~w and T~zw, respectively. In the 

autopilot synthesis, the maps T~w and T~2w 
represent the closed-loop matrices from the 
inputs w to the controlled performance outputs 
z~ and z2, respectively. Then the closed-loop 
transfer matrix leading to the lower linear frac- 
tional transformation (LFT) of p and K(Bern- 
stein et al., 1991), if well posed, is defined as 

] T.o.= ::. D.. j -LC,+D,,K g' (11) 

T " ' =  [A::2 gCtct2] -[A+BzK- [ Cz+Dz2K g'2,] (12, 

With these notations and assumptions in mind, 
we are interested in synthesizing the vehicle auto- 
pilot controller. 

Problem Statement: Given the vehicle plant p 
with a predetermined scalar 7| >0, find a stabiliz- 
ing controller K for all admissible uncertainties 
w to solve the following synthesis problem via 
LMI optimization (Khargonekar and Rotea, 
1991; Bernstein et al., 1991): 

inf IIT,,~lk=r~o,, subject to ll T~| r= 
g s t a b i l i z i n g  

with a closed-loop pole constraint in a desired 

region Hct. 
In the above statement, the set//c~ is a subset of 

complex left-half plane. 

3.2 Pole assignment in the prescribed region 

As specified in Fig. 3, the closed-loop poles are 
placed in a subregion Hct(a, B, r)  of open 

Fig. 3 Regional set/-/c~ for an arbitrary closed-loop 
pole constraint. 

left-half plane with a closed-loop pole zi~Hct:  

r ) E ~ ,  i=1 ,  2, ..., n} with j = , / - - 1  

where c~a~ is a damped natural frequency. It is 
well known that the pole constraint directly 
impacts many dynamic characteristics of the 
closed-loop system (that is, rise time, settling 
time, and maximum overshoot, etc.). The convex 
regions Ha can be given as LMI via the 
Lyapunov matrix Xn. 

Theorem 1: There exists a state feedback gain 
K n ( E k )  such that all poles of the closed-loop 
system "~..ct are located in the prescribed LMI 
region of the manifold: 

H c z = { z ~ C :  ~(Z,  x-)<0} (13) 

where the Hermitian matrix ~ is given by ~ (X, 
Z) = E + NZ + N r Z with the fixed matrices E = 
E r and N,  if and if only there exists a matrix Xn 
= X r > 0  which satisfies the following inequality: 

[AoXn+eijAcXn+eijXnAcr]imj=x<O (14) 

where [A~]m~=l and [e~]mi.j=l are the generic 

entries of the Hermitian matrices V ~  C <m• and 
N ~ C <'• respectively. 
Proof." See Wang et al. (1995), and Chilali and 
Gahinet (1996). �9 �9 
If all eigenvalues of Act are confined to the 
desired domain Ha, the vehicle system modes 
damp asymptotically at desired rates and achieve 
a specified degree of stability. 

3.3 H~ optimal compensator design 
The H~ suboptimal task is to design a control- 
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ler K<~(~k)  which stabilizes the generalized 

vehicle model. The closed- loop L2-induced norm 

constraint is formalized as lITerally= sup I I T . ~  
co 

( jN) 1too< 7"= for a given 7"=~N+, where 1,2 is the 
square-integrable signals defined over R +. Based 

on the Bounded Real Lemma (lwasaki and 

Skelton, 1994), the H= suboptimal synthesis can 

be expressed in the following LMls (Boyd et aL, 
1994; Khargonekar and Rotea, 1991; Niewoehner 

and Kaminer, 1996). 

Theorem 2: For the given plant p ,  there exists 

a controller K~ that satisfies the H| suboptimal 

constraint 7"~ with the internal stability of T~=w in 

Eq. (11) (or ~cz=) if and if only there exist a 

Lyapunov matrix Xoo>0 satisfying the following 

LMI: 

( A a X = + X = A  r, B~,, X ~ C c ~ \  
B~ - r~I Dr~ J < 0  (15) 

C ~ X =  Dzc~ - 7"=1 ] 

Proof: See You (1997) for the complete proof. �9 

It follows that the L2 norm gain of the input/  

output mapping between w and z= is clearly 

bounded as IIz~h< 7.~llwh, Further, a pure Ha 
optimal problem with a gain matrix K=om ( ~ k )  

can be obtained such that inf IIT~II~ =7"~o~- 
K ~ O p t  

where 7~o~t is a minimal attainable scalar num- 

ber. 

3.4 /-/2 optimal compensator design 
The/-/2 optimal synthesis is to seek to minimize 

II T~=~ll (in ~ .~ )  with a gain matrix K2om ( ~  k) .  
First, the H2 norm of the system satisfies the 

following constraint with D2~=0: 

II T~wllN= Trace (C~z2XCr2) < co (16) 

where X > 0  is the controllabil i ty Gramian of 

(A~z, B ~ ) .  We also o b t a i n  the  f o l l o w i n g  

Lyapunov equation: 

Ac~X + X A  rz + B ~ B  r = 0 (17) 

Let X .2(>X)  denote a positive-definite solution 

to the following Lyapunov inequality: 

r r <  A~X2+ X2A~z+ BczB~ 0 (18) 

it follows that 

2 T II T.2wl[2 < Trace ( C~nX~ C~2 (19) 

Furthermore, the matrices A 2 = X ]  and R = R  T 
satisfy the following LMIs: 

+ r [ A~,X2 X2Ac, (20) 

R Ccz2X,_]> 0 (21) 
X2C~:52 X2 / 

Then it is readily shown to be as I[ T~.~,o[[~< Trace 
(R) .  Now, it is straightforward to show the 

following theorem. 

Theorem 3: For the given plant p ,  there exists 

a stabilizing feedback gain K2om such that the 

c losed- loop norm IlT~[12 is minimized if and if 
only there exists two symmetric matrices X2= X r 

and R = R  r satisfying a set of LMIs (20) and 

(21). 
Proof." The proof  of the theorem is given above. �9 

It is readily shown that II T~o]12 is the minimum of 

~/Trace(R) subject to a set of LMIs given in (20) 

and (21). Further, there exists a scalar 7 2 ~  + 

such that ,/Trace-(-R~-<~ 7"2- Clearly, the /]2 norm 

with II Tz~llN= inf{ Trace (C~2X2 C~2) } = 7"~om can 
be established with a minimal upper bound 72om 

3.5 Mixed H2/H~ suboptimal synthesis with 
pole placement 

In this paper, the general design objective is 

achieved by combining the I-I2/H~ synthesis with 

the pole constraint. However, a set of matrices 

(X~o, Xz, Xn, R, K)  simultaneously satisfy- 

ing the LMIs given in (14), (15), (20) and (21) 

is not convex. It requires that the Lyapunov 

matrices in all specifications should be imposed 

by the constraint X = = X 2 = X n = X c ,  where Xc 
is a common Lyapunov matrix (Khargonekar  

and Roeta, 1991; Boyd et al., 1994; Iwasaki and 

Skelton, 1994). Then the global asymptotic stabil- 

ity for the c losed- loop system (10) (or 52.c~) can 

be established by choosing a Lyapunov function 
T V( t ,  Xc~)=xc~Xcxcz with Xc=XcT>0.  Let a 

new matrix Q be Q - K 2 = X c  with K 2 ~ ( ~ k ) .  
When the performance criteria 72 and 7~ are both 

finite, a combined solution yields a stable closed 
loop system that satisfies the following LMi 

based convex optimization problem. 
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Theorem 4: There exists a stabil izing state 

-feedback control  law u=K2=x,  which can be 

incorporated into the mixed H2/H~ synthesis 

with the pole placement,  if  and only if there exist 

the matrices X c = X c  r, Q, and R R r such that 

inf{Trace(R)} subject to a set of  LMIs (14), 

15), (20), and (21) 

with Xc > 0  and Q = K 2 ~ X c .  

Proof: Based on the above theorems (1 - -3 ) ,  it 

is s traightforward to show this theorem. �9 �9 

Since a set of  matrices (Xc,  R,  Q) exist, a 

control ler  has a cons tan t -ga in  matrix K2= given 

by K2~=  Q X (  1. The corresponding control  law is 

u K 2 = a : = Q X h - l x  via the matrix transforma- 

tion. 

4. M a n e u v e r i n g  S imulat ion  Resul ts  

in diving motion control ,  the output  variables 

(z~, z2) of  interest in (7) are respectively selected 

a s  

o o  

LO 0 0 ld[O j 

- -  C~x + Dtt  w + D~2u (22) 

C2 Ozz 

i ~ 1 z2=  q = 0 1 0 0 q 0 k c~ 
/eq /oooo h +, 
L&/ kO o o OdLO] LO 

- -  C ' z x  -}- D21 tO + D = u  (23) 

where other  matrices are given as D H = 0 ,  D12 
= 0 ,  and D2~=0. For  convenience,  the external 

disturbances are assumed to be w =  w (or Wl ~ w2 

= w )  along with b~= l  and b2=10 in (5). Based 

on the vehicle dynamics and the control  strategies 

described above, we present numerical  s imulat ion 

results to evaluate the autopi lot  performance. 

to enhance the efficiency of  numerical  simula- 

tions. A set of  new vehicle variables are given as: 

g :  104c~(2) : O =  lOd'q ; h =  lO3c~h ; 8 - 1 o  

Then we describe the norrnalized state-space 

equat ions  for the given condi t ions  in Table  [ and 

2 by 

-~2= C2Y" +/)2~ ~b +/ )=  li 

where all the corresponding matrices are calcu- 

lated in Appendix.  In the following, all variables 

are given in the normalized forms. 

4.2 N u m e r i c a l  s imula t ions  

To begin, we consider  the o p e n - l o o p  system 

(32.,a) without control law. As shown in Fig. 4, 

the open loop poles are 0, -0 .4370 ,  and 0.9304 

•  We assign the c losed- loop  poles in the 

Table 1 Vehicle model parmeters 

U =3.065 ~m/secl Iu - 53400 IN! T,~ =53400[N1 

p 1000[kg/m a] i=5.3[m] ,7o 0.0!.m] 

x~ =0.0 [m] z7,; =6. [ {m] zl~-0.0 [m: 

]y-13587[kg.m 2] g=9.81 [m/sec e] 

Table 2 Nondimensional hydrodynamic coefficients for 

the vehicle (*estimated) 

ZU--2.4• - 6.8xi0 eMv 1.7• 2 

Z~- 3.0• ~ Z~=-14• M~-I.0xI0 t Mq=-6.8• e 

*Za~ 3.0• 6.0• a .'lJa~ 4.1x10 e 

4.1 N o r m a l i z e d  vehic le  model  

With the constant  forward speed (6 knots) ,  

Tables  I and 2 describe the nominal  data  for a 

typical underwater  vehicle with their physical 

units (Healey and Lienard,  1993). 

Now,  the linearized vehicle model  ~]e is scaled 
Fig. 4 Pole placement plots: open loop(*), closed 

l o o p ( + ) ,  
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specified region Hr zr/4, 20) of a stable 

complex plane to obtain wel l -damped transient 

responses. Unless mentioned otherwise, all perti- 

nent parameters as well as pole constraint are 

identical in the c losed- loop simulations. In diving 

autopilot  design, the control engineer is required 

to guarantee an acceptable level of disturbance 

attenuation ( 7 ~ = i )  while keeping the control 

effort acceptably low: minimization of  the //2 

norm of T~-,~7 subject to I[T,~=d[~< I(or  0 dB) 

with pole constraint H~z- Now, the actual closed 

- loop  poles are placed at --2.2387, --1.8890, and 

--2.7085+j2.158, which obviously satisfy the 

pole constraints (see Fig. 4). The resulting state 

-feedback law with 2 ~  4 is given by t i ( t ) =  

K 2  (t), where the control gain matrix is 

I-0.7794 -5 .1960 6.2846 - 11.4157] 
Kz=:=[0.1248 0.7523 - 1.1202 2.2992 J" 

Fig. 5 Singular value plots between impulse input 
w and z= for: (a) open-loop, (b) mixed H2/ 
H= synthesis with pole constraints, (c) 
H~-optimal 

In robust control theory singular values have 

been used to extend the classical frequency 

response Bode plot to MIMO systems. The singu- 

lar value plots of the open- loop  vs c losed- loop 

system are shown in Fig. 5. As expected, the 

singular value plots for the c losed- loop systems 

show that the disturbances are rejected very well 

at the low frequencies (<_0 dB). Furthermore, the 

noise attenuation (or suppression) is reasonable 

at high-frequencies ( rol l -off  rate<__40dB/dec- 

ade).  In addition, for the given values ~,~= 1 and 

~'zop~ :=0.981, we evaluate the time responses of the 

c losed- loop system for the impulse-type distur- 

bances in Figs 6 and 7 along with control input 

activities (Fig. 8). For the comparison purpose, 

we present the following results: the smaller the 

infinity norm ~,=, the better the system is able to 

reject disturbances. We can also decrease the 

attenuation level 7~(?'~>?'~opt) at expense of a 

minimum gain ~'2om in H2/Iar= method. Further, 

the best performance level )'=ot, t that can be 

obtained for H| alone (or H=-opt imal)  is 7"=ore 
~4.85 • 10-4(see Fig. 5) with high control gain: 

103 !1-0"0118 -0 .0172 1.2954 
;<[_0.0023 0.0057 0.2491 

- 0.3690] 

0.0579 A" 

All simulation results show that the design objec- 

tives are certainly achieved. As stated in Sec3, we 

present various control  approaches (/-/2, H=, 

mixed Hz/H~ with pole assignment) via LMls. 

Based on the control objective of a given system, 

one can choose an appropriate control scheme to 

Fig. 6 Time responses of output variables z= to impulse disturbance w: (a) open-loop, 
(b) mixed Hz/H~ synthesis with pole constraints. 
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Fig. 7 Time responses of output variables z2 to impulse disturbance w: (a) open-loop, 
(b) H2/H~ synthesis with pole constraints 

Fig. 8 Control input activities u to impulse disturbance w 

obtain the desired performance. In fact, using the 

parameters (a, ~, r ,  ?,=) given in Sec 3, we 

can greatly improve the system performance in 

t ime-domain as well as frequency-domain. 

5. Conclusions  

This paper addresses the application of the 

robust multivariable control scheme for a submer- 

sible vehicle designed to perform a variety of 

missions. The first part of the paper is concerned 

with a compact linear model of the vehicle. Next, 

the mathematical models and the robust control 

algorithms are integrated in the diving autopilot 

design phase. Furthermore, we have reformulated 

the mixed HJH= synthesis problem with pole 
constraint using LMIs. A complete simulation 

analysis in both the time and frequency domains 

is provided in order to explicitly evaluate the 

vehicle guidance and control performance. It has 

been shown that the robust controllers we have 

selected give excellent performance and satisfy the 

control magnitude limit. Finally, the LMl-based  

guidance and control approach provides tractable 

means to design the robust controller. The diving 

autopilot provides a multi-objective optimization 

solution posed by several competing objective 

functions and can readily manipulate the uncer- 
tain vehicle system. 
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A p p e n d i x  

All system matrices in normalized state-space 
model (24) are clearly defined here: 

[--0.8935 --4.92940 8.1423 ] 
! 0.2949 --1.4044 0 --7.0743 I 

Z = l  O0 0 J I 1 0 0 -3.0650 ' 
l 0 

io. 07 l -0.6,,0] 
/0.1922/ ~ | 0.5819 -3.05931 o] 

_ ioo, ] , o  
0 0 0  ' 0 0  " 

0 0  

Oll=02xl, D12=02x2, . D 2 1 = 0 4 x 1  . 


